Chọn A
Ta có
\({4|z|^{2} =\left|z^{2} +4\right|^{2} =\left(z^{2} +4\right)\left(\bar{z}^{2} +4\right)=\, |z|^{4} +4\left(z^{2} +\bar{z}^{2} \right)+16} \\ {\, \, \, \, \, \, \, \, \, \, \, \, =\, |z|^{4} +16+4\left(z+\bar{z}\right)^{2} -8|z|^{2} \quad (1)} \)
Vì \(z+\bar{z}\in {\rm R}\Rightarrow \left(z+\bar{z}\right)^{2} \ge 0\).
Kết hợp với \((1)\) ta được
\( 4|z|^{2} \, \ge \, |z|^{4} +16-8|z|^{2}\)\( \, \Leftrightarrow \, \, |z|^{4} -12|z|^{2} +16\, \, \le \, \, 0\)
\(\Leftrightarrow 6-2\sqrt{5} \le \, |z|^{2} \, \le 6+2\sqrt{5} \, \)
\(\\ {\Leftrightarrow \, \sqrt{5} -1\, \, \le \, |z|\, \le \, \, \sqrt{5} +1} \)
Vậy
\(\min |z|=\sqrt{5} -1\Leftrightarrow \left\{\begin{array}{l} {z+\bar{z}=0} \\ {|z|=\sqrt{5} -1} \end{array}\right. \Leftrightarrow z=\pm \left(\sqrt{5} -1\right)i\)
\(\max |z|=\sqrt{5} +1\Leftrightarrow \left\{\begin{array}{l} {z+\bar{z}=0} \\ {|z|=\sqrt{5} +1} \end{array}\right. \Leftrightarrow z=\pm \left(\sqrt{5} +1\right)i\)
\(\Rightarrow M+m=2\sqrt{5}\)